The Use of Behavioral Manipulation Techniques On Synthetic Insecticides Optimization

 

http://dx.doi.org/10.5772/53354

1. Introduction

 

The necessity of ever increasing agricultural production has induced farmers to use insecticides to improve yields and profits. The current agricultural mode of production is therefore based on intensive use of insecticides in order to ensure the high productivity by eliminating pests and diseases. Otherwise, others xenobiotics are often used as fertilizer to replace nutrients carried out in agroecosystems. However, in many places, the indiscriminate, prolonged and inappropriate use of these xenobiotics has been affecting the ecosystem and farmers health. Concerning insecticides on agroecosystems, the frequent applications can often cause pest resurgence, environmental pollution and human intoxications, eliminate beneficial insects and enables the emergence of the phenomenon of pest resistance. Under this scenario, the search for other control methods aiming to decrease insecticides use, consequently reducing environmental pollution, the ecological imbalance and human intoxications is required. For this purpose, the understanding of the relationship between the various living organisms in the agroecosystems is essential to provide effective pest control. Living organisms present in the fields of production and its surroundings areas feature between them relationships for survival and preservation. In the specific case of insects, the study of chemical ecology focusing on the intra-and interspecific processes of choice and location of partners, hosts, food sources and shelter have had an important role in the pursuit of a sustainable agriculture. In order to offer more alternatives to control pests, early in the second half of the twentieth century studies were initiated for the development of pest management techniques based on behavioral manipulation of the target organism. When it became clear that insects use their senses to communicate with conspecific and other species of animals or plants, it was possible to develop pest behavior research for the benefit of farmers and the environment. What compounds can be used to manipulate the pests and keep them below their level of damage? What behavior can be explored in Integrated Pest Management to reach sustainability in agriculture?

 

At this current scenario of sustainable development, behavioral control is therefore appropriate by enabling to reduce the use of synthetic insecticides, which usually have broad spectrum and side effects to humans, beneficial insects and environment. Compounds and molecules involved in behavioral pest management such as feeding stimulants and semiochemicals, mostly sex pheromones, can be very useful to reduce synthetic insecticides dosage.

 

Practical applications of semiochemicals, including the sex pheromones, can lead to modification of pest communication permitting mating disruption, attraction to pint-source lures for monitoring, control by mass trapping, push-pull and attract-and-kill. Attractant lures can also be used for insect population control, in combination with large-capacity traps or a contact insecticide (Witzgall et al. 2008). The idea of controlling insect populations through species-specific manipulation of sexual communication, without adversely affecting other organisms, has been a driving force for pheromone research. According to Foster & Harris (1997) manipulation is defined as the use of stimuli that either stimulates or inhibits a behavior and thereby changes its expression. This has been achieved and technological shortcomings have been overcome through a joint effort between researchers, industry, and growers. Adoption of semiochemical-based pest management has increased in the face of dwindling conventional options, such as insecticides, increased government regulations and improved cost-competitiveness.

 

There are severals main elements of the behavioral manipulation method on which the tactics and strategies targeting the pest management should be based: knowledge about the behavior of the pest, identification of behaviors that should be handled, the ways in which the behavior is manipulated appropriately and the development of methods and tools that are used in the behavioral management of pests. This chapter will discuss pest monitoring and different behavioral manipulation techniques that can be used alone or in combination with other control methods and enable the optimization of synthetic insecticides use in agriculture.

 

 

 

FIGURE 1. SPLAT NEO (containing Neoleucinodes elegantalis pheromone) on tomato crop in Bezerros, PE. At the top left, the applicator used.

FIGURE 2. Mean number of N. elegantalis eggs throughout tomato crop cycle, variety TY, treated with Splat 1 (with cypermethrin), Splat 2 (without cypermethrin) and control (led by the producer) submitted to treatments 20 and 30 days after transplanting (Camocim de São Félix, Pernambuco, Brazil, 2011-2012). Columns with different letters are significantly different (p>0.05) by Tukey test.

Autores: Solange Maria de França, Mariana Oliveira Breda,
Cesar A. Badji and José Vargas de Oliveira
Additional information is available at the end of the chapter

Esta entrada foi publicada em ACADEMICO, NOVIDADES, PUBLICACOES INTERNACIONAIS. Adicione o link permanente aos seus favoritos.

Deixe uma resposta

O seu endereço de email não será publicado Campos obrigatórios são marcados *

Você pode usar estas tags e atributos de HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>